千年菩提路 玄奘之路 鸠摩罗什传奇 虚云长老传奇 因果报应录 不可思议的因果现象 大德讲故事 《须菩提》故事集 迦旃延 阿那律 优波离 大迦叶 阿难陀 正法眼藏 舍利弗 罗睺罗 目犍连 富楼那 广化律师弘法故事集 哲理小故事 人间巧喻 禅宗故事 禅宗小故事 佛陀教你不生气 菩萨与罗汉的故事 佛陀的圣弟子传 名人轶事 罗汉菜 百喻故事广释 春去春又来 雷锋的故事 释迦牟尼佛传 行禅 妙善公主 释迦牟尼故事 玄奘大师西行故事 假因谤圣 堕无间狱 慈济心灯 金玉良言 改造命运的原理与方法 法苑珠林(卷六)白话 因果原理 马车故事 朋友集 世间百态 关于王永庆的故事 做人的佛法 哼哈一如说 禅理故事 数学家的故事

曹冲称象与七桥问题

人生故事 | 作者:网络 [投稿]

传说,在公元前287年,叙拉古王国的国王打了胜仗,为了庆祝胜利,他决定献给神一顶金子做的王冠。他找来一位珠宝商,给了他一些金子让他制造一顶王冠。王冠制作得很漂亮,重量也跟原来国王给的黄金一样重。但是国王还是怀疑珠宝商盗窃了一部分黄金,而在王冠中掺进了同等重量的白银。他请阿基米德鉴定王冠是不是纯金的,但不许拆散王冠。阿基米德冥思苦想多天,都不得要领。一天,他跨入盛满水的浴缸洗澡,看到水向外溢,顿时豁然开朗,兴奋地喊:“我找到检验王冠的方法了”。

阿基米德由此发现了浮力定理,从而解决了王冠的检验问题。

在我国古代,也流传一个利用浮力原理的“曹冲称象”的故事。曹操的儿子曹冲小时候非常聪明。一天,有人送给曹操一只大象,曹操很高兴,想知道这个庞然大物究竟有多重。但是到哪里去找这样大的秤呢?魏国的谋臣武士们绞尽脑汁,也想不出一个办法。小小的曹冲却想出了一个妙法:他教人把大象牵到一只大木船上,刻下木船的吃水深度;然后把大象牵下船而向船上装进一些石块,让木船吃水深度与原来的刻度一致时即停止继续装石块。根据浮力原理,大象的重量和船上石块的重量相等,而分散的石块是可以用普通的秤称出其重量的。“曹冲称象”成为千古美谈。

“曹冲称象”的思想不仅仅是利用了物理学中的浮力原理,也利用了数学中一个极为普遍的思想:转化思想。即把有待解决的问题,通过适当的方法,转化为已经解决或已经知道其解决方法的问题。

从某种意义上讲,数学证明或数学计算中的每一步都是一种转化,转化思想是数学中最基本、最重要的一种思想。可以毫不夸张地说。转化能力的高低是衡量一个人数学水平的重要标志之一。

匈牙利数学家罗莎曾经对此作过一个有趣的比喻:

假如在你面前有煤气灶、水壶、水笼头和火柴,现在要烧一壶开水,你应该怎样做?

回答很简单,谁都知道应该怎样做。在水壶中加满水;点燃煤气;把水壶放到煤气灶上。

接着罗莎再提出问题:现在所有的条件都和原来一样,只是水壶中已灌满了水,这时你又应该怎样做?对于这一问题人们通常的回答往往是:那就只要点燃煤气,再把水壶放到煤气灶上就可以了。但罗莎指出,这不是最好的回答,因为只有物理学家才会这样做,而数学家则会倒去壶中的水,因为他已经把后一问题转化为前一个问题了,而前一问题是已经解决了的。

罗莎的比喻也许过于夸张,但它的确表明了数学思想方法的一个特点,善于使用转化的方法。

在18世纪,东普鲁士哥尼斯堡(今属立陶宛共和国)内有一条大河,河中有两个小岛。全城被大河分割成四块陆地。河上架有七座桥,把四块陆地像图1那样联系起来。当时许多市民都在思索如下的问题:一个散步者能否从某一陆地出发,不重复地经过每座桥一次,最后回到原来的出发地。

这就是历史上有名的哥尼斯堡七桥问题。

这个问题似乎不难解决,所以吸引了许多人都想来试试看,但是日复一日谁也没有得出确定的答案。于是有人便写信给当时着名的数学家欧拉(Euler,1707 ~1783)求教。欧拉毕竟是数学家,他并没有去重复人们已多次失败了的试验,而是首先产生了一种直觉的猜想:许多人千百次的失败,也许意味着这样的走法根本就不存在。于是欧拉把七桥问题进行了数学的抽象。用A、B、C、D四个点表示四块陆地,用两点间的一条线表示联接两块陆地之间的一座桥,就得到如图2那样一个由四个点和七条线组成的图形。

于是,七桥问题就转化为一个象图2那样的图形是否可以“一笔画”的问题。什么叫“一笔画”呢?那就是笔不准离开纸,一气画成整个图形,但每一条线只许画一次,不得重复。像图2这样的图形能不能一笔画呢?1736年欧拉证明了:答案是否定的。

为什么呢?

因为除了起点和终点之外,我们把其余的点称为中间点。如果一个图可以一笔画的话,对于每一个中间点来说,当画笔沿某条线到达这一点时,必定要沿另一条线离开这点,并且进入这点几次,就要离开这点几次,一进一出,两两配对,所以从这点发出的线必然要是偶数条。因此,一个图形能否一笔画就有了一个判别准则:

一个可以一笔画的图形最多只能有两个点(起点和终点)与奇数条线相连。

再看图2中的四个点都是与奇数条(三条或五条)线相连的,根据这一判别准则,是不能一笔画的。

从而证明了七桥问题所要求的走法是不存在的。

曾经难倒许多人的七桥问题,经过欧拉这一转化,就像哥伦布竖鸡蛋一样,简单而圆满地解决了。

湖南教育出版社 欧阳维诚

广大佛友阅读文章时如发现错别字或者其他语法错误,欢迎指正,以利弘法,你们的支持是我们进步的最好动力。反馈|投稿
热文推荐
精华文章
热门推荐
网站推荐
最新推荐
愿所有弘法功德回向

赞助、流通、见闻、随喜者、及皆悉回向尽法界、虚空界一切众生,依佛菩萨威德力、弘法功德力,普愿消除一切罪障,福慧具足,常得安乐,无绪病苦。欲行恶法,皆悉不成。所修善业,皆速成就。关闭一切诸恶趣门,开示人生涅槃正路。家门清吉,身心安康,先亡祖妣,历劫怨亲,俱蒙佛慈,获本妙心。兵戈永息,礼让兴行,人民安乐,天下太平。四恩总报,三有齐资,今生来世脱离一切外道天魔之缠缚,生生世世永离恶道,离一切苦得究竟乐,得遇佛菩萨、正法、清净善知识,临终无一切障碍而往生有缘之佛净土,同证究竟圆满之佛果。

版权归原影音公司所有,若侵犯你的权益,请通知我们,我们会及时删除侵权内容!

华人学佛网  Copy Rights Reserved @2020 技术问题联络电邮:cnbuddhist@hotmail.com